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Administering vaccines directly to mucosal surfaces can induce both serum and mucosal immune responses.
Mucosal responses may prevent establishment of initial infection at the port of entry and subsequent dissemination to
other sites. The sublingual route is attractive for mucosal vaccination, but both a safe, potent adjuvant and a novel
formulation are needed to achieve an adequate immune response. We report the use of a thermoresponsive gel (TRG)
combined with a double mutant of a bacterial heat-labile toxin (dmLT) for sublingual immunization with a trivalent
inactivated poliovirus vaccine (IPV) in mice. This TRG delivery system, which changes from aqueous solution to viscous
gel upon contact with the mucosa at body temperature, helps to retain the formulation at the site of delivery and has
functional adjuvant activity from the inclusion of dmLT. IPV was administered to mice either sublingually in the TRG
delivery system or intramuscularly in phosphate-buffered saline. We measured poliovirus type-specific serum
neutralizing antibodies as well as polio-specific serum Ig and IgA antibodies in serum, saliva, and fecal samples using
enzyme-linked immunosorbent assays. Mice receiving sublingual vaccination via the TRG delivery system produced
both mucosal and serum antibodies, including IgA. Intramuscularly immunized animals produced only serum
neutralizing and binding Ig but no detectable IgA. This study provides proof of concept for sublingual immunization
using the TRG delivery system, comprising a thermoresponsive gel and dmLT adjuvant.

Introduction

Mucosal surfaces are portals of entry for most pathogens and
consequently mucosal immune responses are an important first
line of defense against pathogens causing diseases such as AIDS,
tuberculosis, respiratory tract infections, diarrheal diseases, and
poliomyelitis, which together cause millions of deaths annually.
The mucosal adaptive immune response includes local produc-
tion of secretory immunoglobulin (slgA) which is resistant to

degradation by proteases and provides protection at the patho-
gen’s site of entry.1,2 Needle-free administration of vaccines
directly to the mucosa—via oral, nasal, or sublingual (SL)
routes—can induce mucosal responses in addition to systemic
immune responses.3-8 Examples of marketed vaccines delivered
via mucosal routes are those for polio, influenza, and rotavirus,
all of which are live attenuated virus formulations.9-14 However,
newer-generation vaccines typically are inactivated viral or bacte-
rial preparations given by intramuscular (IM) or subcutaneous
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injection, which produce predominantly systemic immunity but
poor mucosal response; thus, these routes are less effective at pre-
venting initial infection of mucosal surfaces.3,7,13,15 If delivered
by the oral route (and thus, swallowed), these types of vaccines
have low inherent immunogenicity due to dilution in secretions,
degradation by proteases, low stomach pH, and poor uptake.
Lack of safe and effective mucosal adjuvants further limits the
efficacy of vaccines delivered via the oral mucosal route.

The SL route of mucosal immunization addresses some of
these challenges to oral use of inactivated vaccines by providing a
site that is easily accessible and highly vascularized. It requires
low volumes,2,4,7,16-18 reduces exposure to digestive enzymes,
and avoids the intestinal tract where possible concurrent diarrheal
illness can reduce retention time, thus preventing delivery of vac-
cine antigen to inductive immune sites.1,7,15-23 In addition, SL
vaccinations have a lower risk of central nervous system compli-
cations compared with intranasal vaccines.24 To enhance immu-
nogenicity, SL vaccine formulations can include effective
adjuvants such as bacterial enterotoxins; for example, cholera
toxin, produced by Vibrio cholera, and the closely related heat-
labile toxin, produced by Escherichia coli.5,25 A double mutant
heat-labile toxin (dmLT) adjuvant has been developed from the
latter by the insertion of 2 mutations that greatly reduce toxicity
but retain strong adjuvanticity.26,27 dmLT is a potent mucosal
adjuvant that has been used in several animal models and in a
human Phase 1 clinical trial.7,15,18,21,26-30

In order to provide an effective antigen dose via the SL route,
residence time of the vaccine at the mucosal site must be suffi-
cient for uptake by antigen-presenting cells while minimizing
loss due to swallowing. Residence time could be increased by
using a delivery system with mucoadhesive and penetration-
enhancing components to retain the vaccine formulation in
place. Thermoresponsive gels (TRG) are aqueous solutions at
room temperature and transform into gels at typical body tem-
peratures31,32—for example, upon contact with the mucosa—
and are an attractive technology for administering SL vaccines.
Combining a TRG with an effective adjuvant, such as dmLT,
could provide a needle-free delivery system for various inactivated
and newer-generation vaccines that cannot be administered effec-
tively via the oral route.

Polio is a highly infectious viral disease that affects mainly
children. Currently, there are 3 marketed poliovirus vaccines
used for childhood immunization: trivalent live attenuated oral
poliovirus vaccine (OPV; the World Health Organization no
longer recommends this vaccine alone), trivalent formalin-
inactivated poliovirus vaccine (IPV) administered IM,33 and
Sabin IPV.34,35 OPV is less expensive, easy to administer, and
capable of inducing both humoral and mucosal immunity; how-
ever, vaccine-associated paralytic poliomyelitis and reversion of
vaccine strains to a pathogenic phenotype are major concerns
that limit OPV use for poliovirus eradication.33,36 In addition,
the World Health Organization recommends that countries cur-
rently using OPV-only vaccination add at least one dose of IPV
to the vaccination schedule.37 Therefore, IPV has been identified
by international policymaking bodies as the only option likely to
be recommended for countries wanting to continue vaccination

against polio in the post-eradication era.37-40 As is the case for
most vaccines injected IM, the IPV does not produce significant
mucosal responses, yet these responses to poliovirus have been
shown to play an important role in polio disease prevention.41,42

Researchers are now exploring ways to induce mucosal immune
responses to IPV by adding an adjuvant or changing the route of
administration.33,36,43,44 The goal of this study was to evaluate
mucosal and serum immune responses to IPV generated via SL
immunization in mice using a TRG delivery system, which we
define here as a thermoresponsive gel and dmLT adjuvant.

Results

TRG properties
Several TRG formulations were developed and screened based

on viscosity, liquid-to-gel transition time, and retention (under
the tongue) properties. In a gelation experiment, the lead formu-
lation selected for this study traveled approximately 23% of the
distance traveled by a similar phosphate-buffered saline (PBS)
formulation control (Supplementary Figure S1 and Materials
and methods). Rheology measurements were performed to fur-
ther understand gel formulation viscosity properties (data not
shown). The formulation for this study had a liquid-to-gel transi-
tion time of 5 seconds (for a 10-ml volume) at 36� to 40�C
(mouse oral cavity temperature is 36.5� to 38�C, similar to the
human temperature) and retention time of 10 to 15 minutes
under the tongue. The development of TRG formulations for
mucosal delivery will be reported in detail elsewhere.

IPV in vivo studies
A preliminary IM dose escalation study (Supplementary

Figure S2) was completed to evaluate the relative immunogenic-
ity of a 100-fold range of trivalent IPV doses in mice. Licensed
IPV preparations contain a fixed ratio of 5:1:4 for polio serotypes
1, 2, 3, respectively, due to inherent differences in immunogenic-
ity when administered to humans. We used this ratio in our triva-
lent IPV studies in mice to maximize clinical relevance. No
apparent dose-response relationship for neutralizing antibody
titers for IPV2 or IPV3 was observed. An apparent dose response
for the mean IPV-binding serum immunoglobulin (Ig) titer was
observed after the first vaccine dose. Based on results from this
preliminary study, a trivalent IPV dose of 1.34 D-antigen units
(DU) type-1 (IPV1), 0.3 DU type-2 (IPV2), and 1.1 DU type-3
(IPV 3) (approximately 1/30 of a human dose), defined as a low
dose, was selected for animal study 1. This dose was sufficient to
show improvement in antibody titers compared with traditional
IM vaccination due to the addition of adjuvant or to the alternate
route (data not shown).

Study 1: low-dose IPV
As noted in the Methods section, the enzyme-linked immuno-

sorbent assay (ELISA) used to determine serum immunoglobulin
G (IgG) showed cross-reactivity with mouse IgA (Southern Bio-
technologies mouse IgA; cat# 0106-01). Therefore, we refer to
the antibodies detected by ELISA as IPV-specific serum Ig. In
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Study 1, IM-immunized animals generated the largest magnitude
IPV-specific serum neutralizing (Fig. 1) and IPV-specific serum
Ig (Figure S3, Supplementary material) antibody responses; how-
ever, these animals produced no measurable IPV-specific serum
IgA (Fig. 1) or mucosal IgA responses as measured by salivary
and fecal IPV-specific IgA (Fig. 2). Serum neutralizing antibody
levels in IM-immunized animals were significantly higher than
those in animals vaccinated with the TRG delivery system (Wil-
coxon signed-rank test, IPV1 p D 0.002, IPV2 p D 0.0039), as
was IPV2-specific Ig (Wilcoxon signed-rank test, p D 0.002). As
defined earlier, the TRG delivery system comprises both the ther-
moresponsive gel and the adjuvant dmLT.

Among the 4 groups of SL-immunized animals (Table 1), the
group receiving vaccine formulated in the TRG delivery system
produced the strongest IPV-specific serum neutralizing (Fig. 1),
serum IgA (Fig. 1), and IPV-specific serum Ig (Figure S3, Sup-
plementary material). This group generated significantly more
IPV-specific serum IgA antibodies than animals receiving SL vac-
cination with IPV in Dulbecco’s phosphate-buffered saline
(DPBS) (Wilcoxon signed-rank test, IPV1 p D 0.0313, IPV3
p D 0.0313). This group also produced the highest salivary IgA
titers with the highest response to IPV3 and only a low response
against IPV2 (Fig. 2). Compared with animals receiving SL
immunization with IPV in DPBS, the group vaccinated with the

Figure 1. Study 1: Serum IPV-specific antibody responses to IPV1, IPV2, and IPV3 on day 56. Column (A) Serum neutralizing antibody response; Column
(B) Serum IgA response. Responses are shown as antibody titers for each dose, formulation, and route. Antigen dose is for the IPV1 serotype. Each circle
represents one animal. Horizontal lines are geometric mean titers for each group. Statistically significant differences between animals receiving IM and
the TRG delivery system are shown as brackets over the 2 groups: *p � 0.05, Wilcoxon signed-rank test.
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TRG delivery system produced significantly more IPV-specific
salivary IgA (Wilcoxon signed-rank test, IPV1 p D 0.0078, IPV3
p D 0.002). The fecal IgA titer in the group receiving the low
dose of IPV formulated with the TRG delivery system showed
no difference from the other groups. SL immunization with vac-
cine formulated in TRG without dmLT, or formulated with
only dmLT (without TRG), elicited minimal to no response for
each IPV serotype (Fig. 1 and 2). Na€ıve animals did not generate
any IPV-specific serum neutralizing, IPV-specific serum Ig,
serum IgA, or mucosal IgA antibodies.

Study 2: high-dose IPV
Study 2 tested a higher dose of IPV (IPV1 6.5, IPV2 1.5,

and IPV3 5.5 DU; approximately 1/6 of the human dose) and
also compared SL immunization using the TRG delivery system
in animals with and without anesthesia (Table 2). As in Study
1, IM-immunized animals generated the highest magnitude
IPV-specific serum neutralizing (Fig. 3) and IPV-specific serum
Ig (Figure S4, Supplementary material) antibody responses;
however, these animals produced no detectable serum IgA
(Fig. 3) or mucosal IgA response (Fig. 2). Neutralizing antibody

Figure 2. Study 1 and Study 2: Mucosal IPV-specific antibody responses to IPV1, IPV2, and IPV3. Column (A) Saliva IgA; Column (B) Fecal IgA. Fecal IgA
data are reported as ng of IgA per mg of feces tested. Saliva and fecal samples from Study 1 (1.34 DU) were collected 14 days after the last immunization
(day 56) while the samples from Study 2 (6.5 DU) were collected 7 days after the third immunization (day 49). Antigen dose is for the IPV1 serotype. Each
circle represents one animal. Horizontal lines are geometric mean titers for each group. Differences in response between groups that are statistically dif-
ferent are shown as brackets over the 2 groups. *p � 0.05, Wilcoxon signed-rank test.
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levels generated by IM-immunized animals were significantly
higher than those in animals vaccinated with the TRG delivery
system (Wilcoxon signed rank test, IPV1 p D 0.002, IPV3
p D 0.0195), as was IPV2-specific Ig (Wilcoxon signed-rank
test, p D 0.002).

Of the 2 groups of SL-immunized animals vaccinated under
anesthesia (Table 2), the group receiving vaccine formulated in
the TRG delivery system produced the greatest IPV-specific
serum neutralizing (Fig. 3), serum IgA (Fig. 3), and IPV-specific
serum Ig (Figure S4, Supplementary material). This group also
generated significantly higher levels of IPV-specific serum IgA
than groups that received SL immunization with IPV in DPBS
(Wilcoxon signed-rank test, IPV1 p D 0.0117, IPV2 p D
0.0156, IPV3 p D 0.0078). The TRG delivery system group also
displayed the strongest mucosal IgA antibody titers in salivary
and fecal samples, with highest responses against IPV1 and IPV3
(Fig. 2). SL immunization with vaccine formulated in DPBS
(without TRG or adjuvant) elicited minimal to no response for
any IPV serotype (Figs. 2 and 3). In unanesthetized animals, vac-
cination using the TRG delivery system failed to elicit any
immune response to IPV (Figs. 2 and 3). Na€ıve animals did not
generate any IPV-specific serum neutralizing, IPV-specific serum
Ig, serum IgA, or mucosal IgA antibodies.

Discussion

The goal of this study was to evaluate a needle-free delivery
system for a licensed, inactivated trivalent poliovirus vaccine that
would elicit mucosal antigen-specific IgA antibody when

delivered sublingually. The TRG delivery system produced both
serum and mucosal IgA responses that were not elicited by IM
immunization. In designing this system, we chose a thermores-
ponsive polymer containing mucoadhesive agents and added a
modified bacterial toxin that functions as a safe and effective
mucosal adjuvant. The gel helps protect the antigen from enzy-
matic degradation and minimizes loss from the oral cavity, thus
maximizing uptake to provide adequate stimulation of the
immune system.2 The bulk component of the TRG, a Pluronic�

compound, is a polymeric surfactant that undergoes liquid-to-gel
transition at physiologic temperatures, e.g., upon application
under the tongue.45 The surfactant component provides mucosal
penetration46,47 and is also thought to protect the antigen and
adjuvant from mucosal proteases. Carbopol� and hydroxypropyl
methylcellulose are polymers that provide mucoadhesive proper-
ties to the TRG, and Carbopol� also increases the permeability
of mucosal cells.48

The mucosal adjuvant dmLT was included because it enhan-
ces antigen-specific humoral and cellular immune responses in
both serum and mucosal compartments after immunization via
oral, SL, or intradermal routes in animal studies.2,18,21,26,29,30,49

One polypeptide chain of dmLT has been altered to eliminate
the enterotoxicity typical for this family of bacterial binary toxins;
it is considered safe and has entered human clinical trials.26,29 It
is an advanced clinical candidate both as an antigen to protect
against bacterial diarrhea and as an adjuvant. A limitation of this
study in regard to evaluating dmLT is that IPV was the only anti-
gen evaluated with the TRG delivery system. dmLT has gener-
ated higher responses as an adjuvant with other antigens, and the

Table 1. IPV Study 1 dosing

Group1 IPV1/IPV2/IPV3 D-antigen units Adjuvant Formulation (Volume, mL) Vaccination route2 Anesthesia

1 1.34/0.3/1.1 none DPBS (0.01) SL Yes
2 1.34/0.3/1.1 dmLT3 5 mg DPBS (0.01) SL Yes
3 1.34/0.3/1.1 none TRG (0.01) SL Yes
4* 1.34/0.3/1.1 dmLT 5 mg TRG (0.01) SL Yes
5 1.34/0.3/1.1 none DPBS (0.05) IM No
6 19.6/4.2/16.7 none DPBS (0.06) IM No
7 none none none none No

1Each group consisted of 10 animals.
2All animals were vaccinated on days 0, 21, and 42; sublingual (SL) or intramuscular (IM) routes.
3dmLT: double mutant E. coli heat-labile enterotoxin.
*Immunized with TRG delivery system.

Table 2. IPV Study 2 dosing

Group1 IPV1/ IPV2/ IPV3 D-antigen units Adjuvant Formulation (Volume, mL) Vaccination route2 Anesthesia

1 6.5/1.5/5.5 none TRG (0.01) SL Yes
2* 6.5/1.5/5.5 dmLT3 5 mg TRG (0.01) SL Yes
3* 6.5/1.5/5.5 dmLT 5 mg TRG (0.01) SL No
4 6.5/1.5/5.5 none DPBS (0.05) IM No
5 none none none none No

1Each group consisted of 10 animals, with the exception of group 5, the control group, which comprised 5 animals.
2All animals were vaccinated on days 0, 21, and 42; sublingual (SL) or intramuscular (IM) routes.
3dmLT: double mutant E. coli heat-labile enterotoxin.
*Immunized with TRG delivery system.
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lower levels of the responses generated in this study may be due
to the nature of the large, complex, formaldehyde-inactivated
IPV antigen.28,42,50,51

Neutralizing antibody titer generally has been accepted as the
correlate of protection for poliovirus vaccines and is used as the
gold standard to determine effectiveness of poliovirus vaccina-
tion.52,53 However, mucosal IgA responses have also been
reported to be important for control of poliovirus infec-
tion.41,54,55 Salivary and fecal IgA are considered to represent the
common mucosal immune response (secretory IgA) that can

prevent initial pathogen entry, while circulating IgA and IgG
form a second line of defense, mediating elimination of patho-
gens that have breached the mucosal surface. In addition, fecal
IgA may be important in prevention of viral shedding.54

In our studies, the combination of serum and mucosal IgA
responses were observed only in animals immunized by the SL
route using the TRG delivery system—not in those immunized
by the IM route, nor in those immunized by the SL route with
only gel or adjuvant—suggesting that both components are
essential for eliciting a response when vaccinating at mucosal

Figure 3. Study 2: Serum IPV-specific antibody response to IPV1, IPV2, IPV3 on day 49. Column (A) Serum neutralizing antibody response. Column (B)
Serum IgA response. Responses are shown as antibody titers for each dose, formulation, and route. Antigen dose is for the IPV1 serotype. Each circle rep-
resents one animal. Horizontal lines are geometric mean titers for each group. Differences in response between groups that are statistically different are
shown as brackets over the 2 groups. *p � 0.05, Wilcoxon signed-rank test.
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surfaces.1,2,4,7,15,16,21 Most published studies on SL immuniza-
tion in humans or animals have reported formulating vaccine
antigen in PBS or medium.7,14 Such an approach, in the absence
of gelling and mucoadhesive agents, leads to poor retention at
the administration site.

Because one of our aims was to avoid the use of live attenuated
polio vaccine, we used a licensed inactivated product that is
intended for IM injection. Marketed trivalent poliovirus vaccines
such as IPOLTM or VeroPol contain a dose level of each serotype
optimized to achieve a balanced humoral antibody response and
immunologic memory after IM immunization in humans in the
following order: IPV 1 > IPV3 > IPV2.22 In both Study 1 and
2, the IM-immunized groups generated comparable IPV-specific
serum Ig titers for each of the IPV serotypes. However, the levels
of neutralizing antibody titers were similar only for serotypes 3
and 2, and lower for type 1. A possible explanation is that the
IPV serotype doses and ratios selected for humans may be subop-
timal in mice.24 In SL-immunized animals vaccinated with the
TRG delivery system, the desired balanced response for IPV-
specific Ig and neutralizing antibodies to each serotype was not
obtained. One potential reason for these findings is that there are
differences between these 2 routes15,21 for antigen uptake and
processing;11,22 hence, antigen doses may need to be adjusted for
SL immunization. Another reason may be that mice respond dif-
ferently than humans to these antigens.

In Study 1, not all animals immunized with the TRG delivery
system generated an IPV-specific immune response, and there
was a large variance in titers generated. Therefore, Study 2 was
performed to evaluate a 5-fold higher antigen dose. Increasing
the antigen dose increased the proportion of responding animals,
and the overall antibody titers were higher, suggesting that the
SL dose administered in Study 1 was suboptimal. Serum neutral-
izing and IPV-specific serum Ig titers for the TRG delivery sys-
tem remained lower in magnitude than those in the IM control
group at the higher dose in Study 2.

Study 2 also evaluated immune responses to IPV in the TRG
delivery system in unanesthetized animals, in anticipation of the
possibility for human application of this technology, which
would not include anesthesia. None of the unanesthetized ani-
mals vaccinated with the TRG delivery system produced an
immune response (serum or mucosal) for any IPV serotype.
These mice vigorously tried to remove gel applied to the sublin-
gual area by licking or swallowing, reducing the amount and
time of availability of antigen at the mucosal site. While the
TRG delivery system has potential to overcome barriers to effec-
tive mucosal immunization, this approach has several challenges,
especially for sublingual administration in the target pediatric
population, where the lack of co-operation may result in inaccu-
rate dosing because infants and children may swallow or spit out
the vaccine prior to sufficient absorption. These challenges can
be partially addressed through modifications to the TRG formu-
lation for improved absorption and retention at the site of
administration. This may help in rapid uptake, giving little time
for swallowing or spitting of the vaccine.

The lower systemic response from SL-immunized mice com-
pared with IM‑immunized animals in both studies could be due

to a suboptimal antigen dose for the SL route, where a portion of
the dose can be lost due to dilution in saliva or involuntary swal-
lowing even in anesthetized animals. Another explanation could
be the selection of the mouse as an animal model for evaluation
of SL route of immunization. Though mice are commonly used
as model animals for preclinical evaluation of SL vaccines, these
rodents have a keratinized SL mucosa that may reduce the uptake
of antigen via this route.27 While this is a possible limitation in
the study design, our findings demonstrate effective induction of
mucosal and serum response regardless of the possible interfer-
ence of the keratinized mucosa.

Overall, this study provides proof of concept for a delivery sys-
tem comprising a thermoresponsive gel and dmLT adjuvant to
produce antigen-specific mucosal and serum IgA responses to a
licensed IPV via SL immunization. Further use of this delivery
system will require investigation of its safety/toxicity profile at
the administration site, including a histological evaluation of the
sublingual mucosal epithelium. Since the development of a vac-
cine formulation is a complex and a costly process, a systematic
approach for evaluating the potential of the TRG delivery system
will be needed. This would include investigation and monitoring
of antigen stability with the TRG delivery components under
various stress conditions of pH and temperature while maintain-
ing the product performance (gelation and mucoadhesion).
Additional studies using the TRG delivery system also will help
define the best models, doses, and conditions to guide further
development for eventual use in human immunization. The
information gained will be valuable in forming a robust base of
knowledge for using TRG delivery system as a platform technol-
ogy for mucosal immunization.

Materials and Methods

TRG delivery system
Stock solutions of Carbopol� (Lubrizol; cat # CRP471PNF),

hydroxypropyl methylcellulose (HPMC, Sigma; cat # 423238),
and Pluronic� F127 (Sigma, cat# P2443) were prepared in puri-
fied water (Elga model PL5232). The adjuvant dmLT was sup-
plied in lyophilized vials by Walter Reed Army Institute of
Research (Lot #1735) and was reconstituted to 2 mg/mL using
sterile water. Appropriate volumes of the 3 gel components were
mixed with dmLT and vaccine to achieve final concentrations of
0.10% weight/volume (w/v) Carbopol�, 0.75% w/v HPMC,
15% w/v Pluronic� F127, and 0.25 mg/mL dmLT). The gela-
tion of the lead formulation candidate at 37�C was measured as
distance traveled after application to a tilted Petri dish. Briefly, a
petri dish set at an angle of 75 degrees was equilibrated to 37�C
for 30 minutes. Formulations mimicking the administered dose
(10 mL) were applied in duplicate at room temperature, and the
distance traveled was measured after 2 minutes. The control was
DPBS.

Antigens
Bulk trivalent IPV was provided by Staten Serum Institute

(SSI) (batch # TPA 2011-01) at concentrations of 327 D-antigen
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units (DU)/mL, 70 DU/mL, and 279 DU/mL for serotypes
IPV1 (Brunhilde strain), IPV2 (MEF-1 strain), and IPV3 (Sau-
kett strain), respectively. The concentration of trivalent IPV in
the final TRG delivery system was 134 DU/mL (IPV1) in Study
1 and 654 DU/mL (IPV1) in Study 2. IPV stock concentration
was determined by D-antigen ELISA at SSI prior to formulating
with TRG. In addition, monovalent IPV antigens were provided
as assay antigens by SSI (IPV1 batch #1-2011-03; 977 DU/mL;
IPV2 batch #2-2009-03; 1260 DU/mL; IPV 3 batch #3-2010-
05; 1860 DU/mL).

In vivo studies
Female BALB/cJ mice (6 weeks old; Jackson Laboratories Bar

Harbor; cat# 000651) were used for all in vivo studies.

Preliminary study: dose selection for animal study
Seventy mice were distributed into 7 groups of 10. On days 0

and 21, animals in groups 1 to 6 were given IM doses of a »100-
fold range of trivalent IPV (19.6, 12, 4, 1.3, 0.44, or 0.15 DU,
respectively, based on IPV1); the animals in group 7 were
untreated. Serum samples were collected from each animal on
days -1, 20, and 35 of the study. All animals were euthanized on
day 35.

Study 1: Low-dose IPV
Seventy female BALB/cJ mice were distributed into 7 groups

of 10 (see Table 1 for dosing information). Two groups were
given IM injections with IPV formulated in DPBS (DPBS; Cell-
gro; cat#21-031-CV), with one group receiving a higher vaccine
dose. IM vaccine did not contain adjuvant. Of the 4 SL-
immunized groups, 2 received vaccine in DPBS, one with and
one without dmLT adjuvant. The final 2 SL-immunized groups
received vaccine in TRG, one with and one without dmLT adju-
vant. All immunized groups received 3 vaccinations as detailed in
Table 1. The seventh group of mice was a control group and
received no treatments.

SL vaccination was performed by anesthetizing animals with
2.1 mg Ketamine (Mylan, generic of Ketalar, NDC#67457-108-
10) and 0.132 mg Xylazine (AnaSed�, Lloyd Laboratories
NADA#139-236) mixed in 0.9% saline solution (Hospira,
NDC# 0409-4888-10) intraperitoneally and pipetting vaccine
under the tongue (doses and volumes shown in Table 1). Ani-
mals were maintained in a vertical position (holding by scruff at
back of neck, head upwards, chin parallel to the floor, and mouth
held open with forceps) during and for 15-20 seconds after
administration. Animals were then placed prone on clean paper
towels for an additional 1-2 minutes before being returned to
their cage. IM injections were performed by injecting 0.05 mL
(low dose) or 0.06 mL (maximum dose) into the quadriceps
muscle of unanesthetized animals.

Blood was collected 20 days after the first immunization and
14 days after subsequent immunizations for analysis by ELISA
(all collected via retro-orbital bleed except for the final time
point, which was by cardiac puncture). Animals were euthanized
14 days after the third immunization for collection of saliva and
feces for analysis of mucosal IgA responses by ELISA.

Anesthetized animals received an intraperitoneal injection of
0.05 mL of 1.8 mM pilocarpine/PBS solution (Sigma
cat#P0472) to stimulate salivation. Saliva was collected with a
sterile glass Pasteur pipette and transferred to a sterile tube con-
taining 10X concentrated protease inhibitor solution (Roche
Diagnostics, cat# 11697 498001). The samples were mixed and
stored at �¡60�C prior to testing.50,56 Large intestine content
(fecal) samples were collected 14 days after the third immuniza-
tion. The colon was excised from each euthanized animal and the
feces were collected into a 15-mL conical tube containing
1.5 mL PBS with 0.5% Tween 20 and protease inhibitor solu-
tion. The fecal sample weight was recorded, samples were mixed
vigorously for 2–5 minutes at room temperature, centrifuged at
3,000 RPM for 10 minutes at 4�C, and the supernatants
(1.0 mL) were transferred to 1.5-mL tubes for storage at
�¡60�C prior to testing.

Study 2: High-dose IPV
Forty-5 female BALB/cJ mice were allocated into 5 groups

(see Table 2 for dosing information). Four groups of 10 animals
were immunized, while the control group of 5 animals received
no treatments. One group was IM-immunized in the quadriceps
muscle with IPV in DPBS. The other 3 groups received SL
immunization with vaccine formulated in TRG. One of these
groups received a TRG formulation without adjuvant, while the
other 2 received TRG formulation with dmLT (5 mg/mL), one
under anesthesia and one unanesthetized. Vaccination methods
were the same as described above for Study 1. SL vaccination of
unanesthetized animals was performed in a manner similar to
that described for anesthetized animals except that animals were
manually restrained for at least 1 minute after administration.
Blood was collected 14 days after the second immunization and
7 days after the third immunization from all groups for analysis
by microneutralization assay and ELISA. Euthanasia and collection
of saliva and feces were performed as described for Study 1 except
the collection date was 7 days after the third immunization.

Immunological Assays

Serum microneutralization antibody assay
Samples were tested using a standard microneutralization

assay for antibodies to poliovirus types 1, 2, and 3 according to
established protocols at the Global Polio Specialized Laboratory,
Centers for Disease Control and Prevention.57,58 Briefly, 80–100
CCID50 of each poliovirus serotype and 2-fold serial dilutions of
serum were combined and pre-incubated at 35�C for 3 hours
before addition of HEp-2(C) cells. After incubation for 5 days at
35�C and 5% CO2, plates were stained with crystal violet and
cell viability measured by optical density in a spectrophotometer.
Each specimen was run in triplicate, with parallel specimens
from one study subject tested in the same assay run, and the neu-
tralization titers estimated by the Spearman-K€arber method59

and reported as the reciprocal of the calculated 50% end point.
Each run contained multiple replicates of a reference antiserum
pool starting at a 1:32 dilution to monitor assay performance
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and variation. A serum sample was considered positive if antibod-
ies were present at �1:8 dilution. Specimens with antibody titers
<1:8 were considered seronegative.

IPV Ig ELISA
For the ELISAs carried out to determine the presence of IPV-

specific IgG, horseradish peroxidase-conjugated goat anti-mouse
IgG (HCL) antibody (GE Healthcare; cat# NXA931-1ML) was
used. However, initial testing showed cross-reactivity with mouse
IgA (Southern Biotechnologies; cat #0106-01); therefore, we
have designated the antibodies detected by this ELISA as IPV-
specific serum Ig.

Serum samples were tested for Ig specific for each IPV sero-
type. Ig ELISA specificity for each IPV type was confirmed in a
separate study (data not shown) where monovalent vaccine anti-
gens were used to immunize animals, and no cross-reactivity was
observed between IPV type-specific antibodies. Plates (Corning/
Costar; cat#9018) were incubated overnight at 4�C with
0.1 mL/well of monovalent IPV antigen (2.4, 3.1, or 9.3 DU/
mL of IPV1, IPV2, or IPV3, respectively) in DPBS. The plates
were then washed 3 times with DPBS (Fisher; Hyclone cat#
SH30378.02) /0.1% (v/v) Tween 20 (Fisher; cat# BP 337-500)
using an ELx450 plate washer (BioTek) and blocked for 1 hour
at room temperature (RT) with DPBS/1% (w/v) BSA (Roche;
cat#100350). The plates were washed 3 times with DPBS/0.1%
(v/v) Tween 20, then the serum samples and a high-titer serum
standard (prepared by pooling day 63 sera from 3 groups of ani-
mals immunized by the IM route with monovalent IPV) that
had been serially diluted (1:2 dilutions) in assay buffer (DPBS/
0.05% Tween 20/1% BSA) were added (0.1 mL/well) and the
plates were incubated overnight at 4�C. The plates were washed
5 times, then a 1:3,000 dilution of horseradish peroxidase-
conjugated goat anti-mouse IgG (HCL) antibody in assay buffer
was added (0.1 mL/well) and the plates were incubated for
1 hour at 37�C. The plates were washed 5 times, then tetrame-
thylbenzidine (TMB) substrate (KPL; cat# 50-76-00) was added
(0.1 mL/well) and plates were incubated at RT in the dark for 15
minutes. TMB Stop Solution was added (0.1 mL/well; KPL,
cat# 50-85-06) and the OD450 for each well was determined
using a Victor3 plate reader (Perkin Elmer). End point titer
results were reported as the last sample dilution having an OD450

greater than 0.2 (which was greater than 2 times of background
plus 3 standard deviations).

IPV IgA ELISA
Serum, fecal, and salivary samples were tested for IgA anti-

bodies specific for each IPV type. Plates were coated, washed,
and blocked as described above using a Skan Washer 300 plate
washer (Molecular Devices). Fecal samples were diluted in
DPBS to approximately 50 mg/mL prior to testing. Serially
diluted (1:2) assay test samples (starting with serum 1:100,
saliva 1:20, fecal fluid approximately 50 mg/mL) and controls
were added at 0.1 mL/well and incubated at 4�C overnight.
After washing, 0.1 mL/well of biotinylated goat anti-mouse IgA
(Southern Biotechnologies; cat# 1040-08) diluted 1:5,000 in
assay buffer was added and plates were incubated for 2 hours at

RT. After washing, 0.1 mL/well of avidin-peroxidase (ExtrAvi-
din Sigma; cat#E2886) diluted 1:1,000 in DPBS was added
and plates were incubated for 1 hour at RT. Plates were devel-
oped as described for IPV-specific serum Ig and were read on a
Spectramax M2 plate reader (Molecular Devices). Salivary and
serum end point titers were reported as the last sample dilution
having an OD450 greater than 2.5 times the na€ıve control
group. IgA ELISA specificity for IgA antibodies was confirmed
by control wells included on each assay plate coated with mouse
IgG1 at 1 mg/mL (Sigma cat #M9569). In addition, secondary
antibody specificity for mouse IgA was confirmed by testing
against plates coated with mouse IgA, IgG1, IgG2a, IgG2b; as
expected, secondary antibodies were specific for mouse IgA at
the dilution used in the ELISA. Fecal end point titers were
reported for the weight of feces tested. IPV-specific fecal IgA
levels were determined by comparison with a mouse IgA protein
standard (Southern Biotechnologies, cat #1040-08) included as
a standard on each ELISA plate. IPV-specific fecal IgA data are
reported using the IgA standard to calculate the ng of fecal IgA/
mg of fecal pellet weight.60 Saliva and fecal samples are variable
in their composition and represent a complex sample matrix
making the quantitative antibody testing from these samples
challenging.

Statistical analysis
The geometric mean titers of neutralizing, binding Ig, and

binding IgA antibodies were calculated using GraphPad software
(GraphPad version 6.00 for Windows, GraphPad Software, www.
graphpad.com). The Wilcoxon signed-rank test was performed to
compare results from animals receiving SL vaccinations with the
TRG delivery system with results from IM matched-dose control
animals. Separate comparisons were also made between animals
receiving SL vaccinations with the TRG delivery system and ani-
mals receiving SL immunization with IPV in DPBS. P values of
0.05 were considered statistically significant.
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